Friday, 30 March 2012

Men or Women Live Longer??

       
    Recent research has shown some statistic about the women and men life-span that can be argued about women live longer than men. In line with all the statement, there are secrets behind all the portion of women survive longer than men.
      
If female longevity is the product of evolutionary forces, then one might wonder what physiological mechanisms have evolved to support the preferential survival of women over men. As we have mentioned, sex hormones are thought to be important factors in determining the relative susceptibilities of the genders to aging and disease. Less obvious is the contribution that menstruation might make to longevity. Because of the monthly shedding of the uterine lining, premenopausal women typically have 20 percent less blood in their bodies than men and a correspondingly lower iron load. Because iron ions are essential for the formation of oxygen radicals, a lower iron load could lead to a lower rate of aging, cardiovascular disease and other age-related diseases in which oxygen radicals play a role. Indirect support for this theory comes from studies at the University of Kuopio in Finland and the University of Minnesota Medical School. In these studies, male volunteers who made frequent blood donations had less oxidation of LDL cholesterol--a key step in the development of atherosclerosis and heart disease.

      Women also have a slower metabolism than men--a distinction that makes them more prone to obesity. But there may also be an inverse relation between metabolic rate and life span. Evidence of this link comes from animal studies of food restriction, which slows metabolic processes: in experiments sponsored by the National Institute on Aging, monkeys that ate 30 percent less of the same diet as their free-feeding peers seemed to age more slowly.
      Studies of so-called clock genes in microscopic worms have also demonstrated the connection between metabolic rate and life span. Siegfried Hekimi of McGill University has observed that worms with particular mutations in these genes live five times as long as normal animals and have much slower physiological functions. Although it is still not known why men's metabolism rates are faster than women's, it is becoming clear that this difference is present almost from the moment of conception, when male embryos divide faster than female ones. The faster metabolic rate may make men's cells more vulnerable to breakdown, or it may simply mean that the male life cycle is completed more promptly than the female one.
Finally, chromosomal differences between men and women may also affect their mortality rates. The sex-determining chromosomes can carry genetic mutations that cause a number of life-threatening diseases, including muscular dystrophy and hemophilia. Because women have two X chromosomes, a female with an abnormal gene on one of her X chromosomes can use the normal gene on the other and thereby avoid the expression of disease (although she is still a carrier of the defect). Men, in contrast, have one X chromosome and one Y chromosome, and so they cannot rely on an alternative chromosome if a gene on one of the sex chromosomes is defective.
      This disadvantage became more ominous when, in 1985, researchers at Stanford University reported the discovery on the X chromosome of a gene critical to DNA repair. If a man has a defect in this gene, his body's ability to repair the mutations that arise during cell division could be severely compromised. The accumulation of such mutations is thought to contribute to aging and disease.
       There is also increasing interest in women's second X chromosome as a longevity factor in and of itself. Although one of the two Xs is randomly inactivated early in life, the second X seems to become more active with increasing age. It may be that genes on the second X "kick in" and compensate for genes on the first X that have been lost or damaged with age. This compensation could have a sizable influence, as it appears that roughly 5 percent of the human genome may reside on the X chromosome. In recent years the X chromosome has also become the focus of the search for genes that might directly determine human life span.

No comments:

Post a Comment